Eric Evans, "Supple Design", in Domain-Driven Design: Tackling Complexity in the Heart of Software, 270-283.Declarative design
This term means many things to many people, but usually it indicates a way to write a program, or some part of a program, as a kind of executable specification. A very precise description of properties actually controls the software. In its various forms, this could be done through a reflection mechanism or at compile time through code generation (producing conventional code automatically, based on the declaration). This approach allows another developer to take the declaration at face value. It is an absolute guarantee.
Generating a running program from a declaration of model properties is a kind of Holy Grail of MODEL-DRIVEN DESIGN, but it does have its pitfalls in practice. For example, here are just two particular problems I've encountered more than once.
- A declaration language not expressive enough to do everything needed, but a framework that makes it very difficult to extend the software beyond the automated portion
- Code-generation techniques that cripple the iterative cycle by merging generated code into handwritten code in a way that makes regeneration very destructive
The unintended consequence of many attempts at declarative design is the dumbing-down of the model and application, as developers, trapped by the limitations of the framework, enact design triage in order to get something delivered.
Rule-based programming with an inference engine and a rule base is another promising approach to declarative design. Unfortunately, subtle issues can undermine this intention. Although a rules-based program is declarative in principle, most systems have "control predicates" that were added to allow performance tuning. This control code introduces side effects, so that the behavior is no longer dictated completely by the declared rules. Adding, removing, or reordering the rules can cause unexpected, incorrect results. Therefore, a logic programmer has to be careful to keep the effect of code obvious, just as an object programmer does.
Many declarative approaches can be corrupted if the developers bypass them intentionally or unintentionally. This is likely when the system is difficult to use or overly restrictive. Everyone has to follow the rules of the framework in order to get the benefits of a declarative program.
The greatest value I've seen delivered has been when a narrowly scoped framework automates a particularly tedious and error-prone aspect of the design, such as persistence and object-relational mapping. The best of these unburden developers of drudge work while leaving them complete freedom to design.
Domain-specific languages
An interesting approach that is sometimes declarative is the domain-specific language. In this style, client code is written in a programming language tailored to a particular model of a particular domain. For example, a language for shipping systems might include terms such as cargo and route, along with syntax for associating them. The program is then compiled, often into a conventional object-oriented language, where a library of classes provides implementations for the terms in the language.
In such a language, programs can be extremely expressive, and make the strongest connection with the UBIQUITOUS LANGUAGE. This is an exciting concept, but domain-specific languages also have their drawbacks in the approaches I've seen based on object-oriented technology.
To refine the model, a developer needs to be able to modify the language. This may involve modifying grammar declarations and other language-interpreting features, as well as modifying underlying class libraries. I'm all in favor of learning advanced technology and design concepts, but we have to soberly assess the skills of a particular team, as well as the likely skills of future maintenance teams. Also, there is value in the seamlessness of an application and a model implemented in the same language. Another drawback is that it can be difficult to refactor client code to conform to a revised model and its associated domain-specific language. Of course, someone may come up with a technical fix for the refactoring problems.
This technique might be most useful for very mature models, perhaps where client code is being written by a different team. Generally, such setups lead to the poisonous distinction between highly technical framework builders and technically unskilled application builders, but it doesn't have to be that way.
A declarative style of design
Once your design has INTENTION-REVEALING INTERFACES, SIDE-EFFECT-FREE FUNCTIONS, and ASSERTIONS, you are edging into declarative territory. Many of the benefits of declarative design are obtained once you have combinable elements that communicate their meaning, and have characterized or obvious effects, or no observable effects at all.
A supple design can make it possible for the client code to use a declarative style of design.
Angles of attack
This chapter has presented a raft of techniques to clarify the intent of code, to make the consequences of using it transparent, and to decouple model elements. Even so, this kind of design is difficult. You can't just look at an enormous system and say, "Let's make this supple." You have to choose targets. Here are a couple of broad approaches [...].
Carve off subdomains
You just can't tackle the whole design at once. Pick away at it. Some aspects of the system will suggest approaches to you, and they can be factored out and worked over. You may see a part of the model that can be viewed as specialized math; separate that. Your application enforces complex rules restricting state changes; pull this out into a separate model or simple framework that lets you declare the rules. With each such step, not only is the new module clean, but also the part left behind is smaller and clearer. Part of what's left is written in a declarative style, a declaration in terms of the special math or validation framework, or whatever form the subdomain takes.
It is more useful to make a big impact on one area, making a part of the design really supple, than to spread your efforts thin.
Draw on established formalisms, when you can
Creating a tight conceptual framework from scratch is something you can't do every day. Sometimes you discover and refine one of these over the course of the life of a project. But you can often use and adapt conceptual systems that are long established in your domain or others, some of which have been refined and distilled over centuries. Many business applications involve accounting, for example. Accounting defines a well-developed set of ENTITIES and rules that make for an easy adaptation to a deep model and a supple design.
There are many such formalized conceptual frameworks, but my personal favorite is math. It is surprising how useful it can be to pull out some twist on basic arithmetic. Many domains include math somewhere. Look for it. Dig it out. Specialized math is clean, combinable by clear rules, and people find it easy to understand.
Thursday, July 29, 2021
Supple design II
Sunday, July 25, 2021
Supple design
Eric Evans, "Supple Design", in Domain-Driven Design: Tackling Complexity in the Heart of Software, 243-270.The ultimate purpose of software is to serve users. But first, that same software has to serve developers. This is specially true in a process that emphasizes refactoring. As a program evolves, developers will rearrange and rewrite every part. They will integrate the domain objects into the application and with new domain objects. Even years later, maintenance programmers will be changing and extending the code. People have to work with this stuff. But will they want to?
To have a project accelerate as development proceeds — rather than get weighed down by its own legacy — demands a design that is a pleasure to work with, inviting to change. A supple design.
A lot of overengineering has been justified in the name of flexibility. But more often than not, excessive layers of abstraction and indirection get in the way. Look at the design of software that really empowers the people who handle it; you will usually see something simple. Simple is not easy. To create elements that can be assembled into elaborate systems and still be understandable, a dedication to MODEL-DRIVEN DESIGN has to be joined with a moderately rigorous design style. It may well require relatively sophisticated design skill to create or to use.
Early versions of a design are usually stiff. Many never acquire any suppleness in the time frame or budget of the project. I've never seen a large program that had this quality throughout. But when complexity is holding back progress, honing the most crucial, intricate parts to a supple design makes the difference between getting sucked down into legacy maintenance and punching through the complexity ceiling.
INTENTION-REVEALING INTERFACES
We are always fighting cognitive overload: If the client developer's mind is flooded with detail about how a component does its job, his mind isn't clear to work out the intricacies of the client design. This is true even when the same person is playing both roles, developing and using his own code, because even if he doesn't have to learn those details, there is a limit to how many factors he can consider at once.
Therefore:
Name classes and operations to describe their effect and purpose, without reference to the means by which they do what they promise. This relieves the client developer of the need to understand the internals. These names should conform to the UBIQUITOUS LANGUAGE so that team members can quickly infer their meaning. Write a test for a behavior before creating it, to force your thinking into client developer mode.
All the tricky mechanism should be encapsulated behind abstract interfaces that speak in terms of intentions, rather than means.
In the public interfaces of the domain, state relationships and rules, but not how they are enforced; describe events and actions, but not how they are carried out; formulate the equation but not the numerical method to solve it. Pose the question, but don't present the means by which the answer shall be found.
SIDE-EFFECT FREE FUNCTIONS
Operations can be broadly divided into two categories, commands and queries. Queries obtain information from the system, possibly by simply accessing data in a variable, possibly performing a calculation based on that data. Commands (also known as modifiers) are operations that affect some change to the systems (for a simple example, by setting a variable). In standard English, the term side effect implies an unintended consequence, but in computer science, it means any effect on the state of the system.
Interactions of multiple rules or compositions of calculations become extremely difficult to predict. The developer calling an operation must understand its implementation and the implementation of all its delegations in order to anticipate the result. The usefulness of any abstraction of intefaces is limited if the developers are forced to pierce the veil. Without safely predictable abstractions, the developers must limit the combinatory explosion, placing a low ceiling on the richness of behavior that is feasible to build.
Operations that return results without producing side effects are called functions. A function can be called multiple times and return the same value each time. A function can call on other functions without worrying about the depth of nesting. Functions are much easier to test than operations that have side effects. For these reasons, functions lower risk.
Obviously, you can't avoid commands in most software systems, but the problem can be mitigated in two ways. First, you can keep the commands and queries strictly segregated in different operations. Ensure that the methods that cause changes do not return domain data and are kept as simple as possible. Perform all queries and calculations in methods that cause no observable side effects.
Second, there are often alternative models and designs that do not call for an existing object to be modified at all. Instead, a new VALUE OBJECT, representing the result of the computation, is created and returned. A VALUE OBJECT can be created in answer to a query, handed off, and forgotten — unlike an ENTITY, whose life cycle is carefully regulated.
Therefore:
Place as much of the logic of the program as possible into functions, operations that return results with no observable side effects. Strictly segregate commands (methods that result in modifications to observable state) into very simple operations that do not return domain information. Further control side effects by moving complex logic into VALUE OBJECTS when a concept fitting the responsibility presents itself.
SIDE-EFFECT FREE FUNCTIONS, specially in immutable VALUE OBJECTS, allow safe combination of operations. When a FUNCTION is presented through an INTENTION-REVEALING INTERFACE, a developer can use it without understanding the detail of its implementation.
ASSERTIONS
When the side effects of operations are only defined implicitly by their implementation, designs with a lot of delegation become a tangle of cause and effect. The only way to understand a program is to trace execution through branching paths. The value of encapsulation is lost. The necessity of tracing concrete execution defeats abstration.
We need a way of understanding the meaning of a design element and the consequences of executing an operation without delving into its internals. INTENTION-REVEALING INTERFACES carry us part of the way there, but informal suggestions of intentions are not always enough. The "design by contract" school goes the next step, making "assertions" about classes and methods that the developer guarantees will be true. Briefly, "post-conditions" describe the side-effects of an operation, the guaranteed outcome of calling a method. "Preconditions" are like the fine print on the contract, the conditions that must be satisfied in order for the post-condition guarantee to hold. Class invariants make assertions about the state of an object at the end of any operation. Invariants can also be declared for entire AGGREGATES, rigorously defining integrity rules.
All these assertions describe state, not procedures, so they are easier to analyze. Class invariants help characterize the meaning of a class, and simplify the client developer's job by making the objects more predictable. If you trust the guarantee of a post-condition, you don't have to worry about how a method works. The effect of delegations should already be incorporated into the assertions.
Even though many object-oriented languages don't currently support ASSERTIONS directly, ASSERTIONS are still a powerful way of thinking about a design. Automated unit tests can partially compensate for the lack of language support. Because ASSERTIONS are all in terms of states, rather than procedures, they make tests easy to write. The test setup puts the preconditions in place; then, after execution, the test checks to see if the post-conditions hold.
Clearly stated invariants and pre- and post-conditions allow a developer to understand the consequences of using an operation or object. Theoretically, any noncontradictory set of assertions would work. But humans don't just compile predicates in their heads. They will be extrapolating and interpolating the concepts of the model, so it is important to find models that make sense to people as well as satisfying the needs of the application.
CONCEPTUAL CONTOURS
Sometimes people chop functionality fine to allow flexible combination. Sometimes they lump it large to encapsulate complexity. Sometimes they seek a consistent granularity, making all classes and operations to a similar scale. These are oversimplifications that don't work well as general rules. But they are motivated by a basic set of problems.
When elements of a model or design are embedded in a monolithic construct, their functionality gets duplicated. The external interface doesn't say everything a client might care about. Their meaning is hard to understand, because different concepts are mixed together.
On the other hand, breaking down classes and methods can pointlessly complicate the client, forcing client objects to understand how tiny pieces fit together. Worse, a concept can be lost completely. Half of a uranium atom is not uranium. And of course, it isn't just grain size that counts, but just where the grain runs.
The twin fundamentals of high cohesion and low coupling play a role in design at all scales, from individual methods up through classes and MODULES to large-scale structures. These two principles apply to concepts as much as to code. To avoid slipping into a mechanistic view of them, temper your technical thinking by frequently touching base with your intuition for the domain. With each decision, ask yourself, "Is this an expedient based on a particular set of relationships in the current model and code, or does it echo some contour of the underlying domain?"
Find the conceptually meaningful unit of functionality, and the resulting design will be both flexible and understandable. For example, if an "addition" of two objects has a coherent meaning in the domain, then implement methods at that level. Don't break the
add()
into two steps. Don't proceed to the next step within the same operation. On a slightly larger scale, each object should be a single complete concept, a "WHOLE VALUE."By the same token, there are areas in any domain where detail isn't interesting to the kind of people the software serves. Clumping things that don't need to be dissected or rearranged avoids clutter and makes it easier to see the elements that really are meant to recombine.
Therefore:
Decompose design elements (operations, interfaces, classes, and AGGREGATES) into cohesive units, taking into consideration your intuition of the important divisions in the domain. Observe the axes of change and stability through successive refactorings and look for the underlying CONCEPTUAL CONTOURS that explain these shearing patterns. Align the model with the consistent aspects of the domain that make it a viable area of knowledge in the irst place.
The goal is a simple set of interfaces that combine logically to make sensible statements in the UBIQUITOUS LANGUAGE , and without the distraction and maintenance burden of irrelevant options. This is typically an outcome f refactoring: it's hard to produce up front. But it may never emerge from technically oriented refactoring; it emerges from refactoring toward deeper insight.
Even when the design follows CONCEPTUAL CONTOURS , there will need to be modifications and refactoring. When successive refactoring tends to be localized, not shaking multiple broad concepts of the model, it is an indicator f model fit. Encountering a requirement that forces extensive changes in the breakdown of the objects and methods is a message: Our understanding of the domain needs refinement. It presents an opportunity to deepen the model and make the design more supple.
STANDALONE CLASSES
Interdependencies make models and designs hard to understand. They also make them hard to test and maintain. And interdependencies pile up easily.
Both MODULES and AGGREGATES are aimed at limiting the web of interdependencies. When a highly cohesive subdomain is carved out into a MODULE, a set of objects are decoupled from the rest of the system, so there are a finite number of interrelated concepts. But even a MODULE can be a lot to think about without an almost fanatical commitment to controlling dependencies within it.
Even within a MODULE, the difficulty of interpreting a design increases wildly as dependencies are added. This adds to mental overload, limiting the design complexity a developer can handle. Implicit concepts contribute to this load even more than explicit references.
Refined models are distilled until every remaining connection between concepts represents something fundamental to the meaning of those concepts. In an important subset, the number of dependencies can be reduced to zero, resulting in a class that can be fully understood all by itself, along with a few primitives and basic library concepts.
Implicit concepts, recognized or unrecognized, count just as much as explicit references. Although we can generally ignore dependencies on primitive values such as integers and strings, we can't ignore what they represent.
Low coupling is fundamental to object design. When you can, go all the way. Eliminate all other concepts from the picture. Then the class will be completely self-contained and can be studied and understood alone. Every such self-contained class significantly eases the burden of understanding a MODULE.
Dependencies on other classes within the same module are less harmful than those outside. Likewise, when two objects are naturally tightly coupled, multiple operations involving the same pair can actually clarify the nature of the relationship. The goal is not to eliminate all dependencies, but to eliminate all nonessential ones. If every dependency can't be eliminated, each one that is removed frees the developer to concentrate on the remaining conceptual dependencies.
Try to factor the most intricate computations into STANDALONE CLASSES, perhaps by modeling VALUE OBJECTS held by the more connected classes.
CLOSURE OF OPERATIONS
Of course, there will be dependencies, and that isn't a bad thing when the dependency is fundamental to the concept. Stripping interfaces down to deal with nothing but primitives can impoverish them. But a lot of unnecessary dependencies, and even entire concepts, get introduced at interfaces.
Most interesting objects end up doing things that can't be characterized by primitives alone.
Another common practice in refined designs is what I call "CLOSURE OF OPERATIONS." The name comes from that most refined of conceptual systems, mathematics. 1 + 1 = 2. The addition operation is closed under the set of real numbers. Mathematicians are fanatical about not introducing extraneous concepts, and the property of closure provides them a way of defining an operation without involving any other concepts.
Therefore:
Where it fits, define an operation whose return type is the same as the type of its argument(s). If the implementer has state that is used in the computation, then the implementer is effectively an argument of the operation, so the argument(s) and return value should be of the same type as the implementer. Such an operation is closed under the set of instances of that type. A closed operation provides a high-level interface without introducing any dependency on other concepts.
This pattern is most often applied to the operations of a VALUE OBJECT. Because the life cycle of an ENTITY has significance in the domain, you can't just conjure up a new one to answer a question. There are operations that are closed under an ENTITY type. You could ask an Employee object for its supervisor and get back another Employee. But in general, ENTITIES are not the sort of concepts that are likely to be the result of a computation. So, for the most part, this is an opportunity to look for in the VALUE OBJECTS.
An operation can be closed under an abstract type, in which case specific arguments can be of different concrete classes. After all, addition is closed under real numbers, which can be either rational or irrational.
As you're experimenting, looking for ways to reduce interdependence and increase cohesion, you sometimes get halfway to this pattern. The argument matches the implementer, but the return type is different, or the return type matches the receiver and the argument is different. These operations are not closed, but they do give some of the advantages of CLOSURE. When the extra type is a primitive or basic library class, it frees the mind almost as much as CLOSURE.
Making software obvious, predictable, and communicative makes abstraction and encapsulation effective. Models can be factored so that objects are simple to use and understand yet still have rich, high-level interfaces.
These techniques require fairly advanced design skills to apply and sometimes even to write a client. The usefulness of a MODEL-DRIVEN DESIGN is sensitive to the quality of the detailed design and implementation decisions, and it only takes a few confused developers to derail a project from the goal.
That said, for the team willing to cultivate its modeling and design skills, these patterns and the way of thinking they reflect yield software that developers can work and rework to create complex software.
Saturday, July 3, 2021
Monitoring decoded: why, what, and how?
OBS: Nayana Shetty also gave an extended version of this talk at ObservabilityCON 2020, check it out!